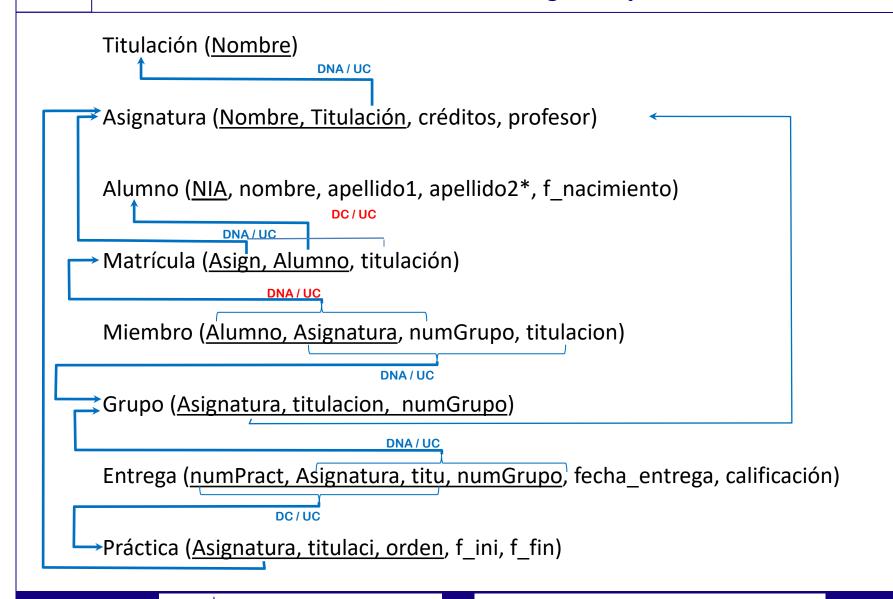
uc3m Tema 3P: Practicando Dinámica Rel.

3.1. Estrategias de Resolución


3.2. del Álgebra Relacional al SQL

3.2. Ejemplos

uc3m Tema 3P: Estrategias de Resolución

- **Dividir** problemas complejos en varios más sencillos (establecer otras subconsultas como pasos intermedios para alcanzar el resultado final)
- Analizar ubicación de los datos (qué tablas contienen las claves de búsqueda y cuáles las claves a proyectar).
- Establecer una *ruta* (navegación) entre las tablas involucradas en la consulta (el Álgebra es un lenguaje navegacional).
- Descubrir la necesidad de **agrupar** tablas cuando se necesitan datos agregados.
- Diferenciar agregación de datos de comparación de tuplas (agrupar y ordenar son recursos diferentes).

Diseño Relacional: Ejemplo

Tema 3P.2: Algebra Relacional Operadores Unarios

Selección: escogemos las tuplas que cumplan una condición

Notación: opredicado (Relación)

Libros escritos por Dumas

Libros

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Asi-1	El Fin de la Eternidad	Asimov
Dum-2	El Conde de Montecristo	Dumas

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Dum-2	El Conde de Montecristo	Dumas

(se escogen filas)

FROM Libros WHERE autor='Dumas';

Tema 3P.2: Algebra Relacional Operadores Unarios

Tu turno:

- Estudiantes senior (mayores de 65)
- Cursos en los que se ha matriculado el estudiante 1234

- Estudiantes que celebran hoy su cumpleaños
- Prácticas expiradas
- Cursos con el término 'Big Data' en su título

Tema 3P.2: Algebra Relacional Operadores Unarios

Estudiantes senior (mayores de 65)

```
\sigma(\text{SYSDATE-f\_nacimiento})/365.2422 > 65 \ (Alumno)
```

Cursos en los que se ha matriculado el estudiante 1234

```
σ<sub>alumno=1234</sub> (Matrícula)
```

Estudiantes que celebran hoy su cumpleaños

```
\sigma_{\text{to\_char}(\text{SYSDATE,'DD/MM'})=\text{to\_char}(f\_\text{nacimiento,'DD/MM'})} (Alumno)
```

Prácticas expiradas

```
σ<sub>f_fin></sub>sysdate (Práctica)
```

Cursos con el término 'Big Data' en su título

```
Onombre LIKE '%Big Data%' (Asignatura)
```

Tema 3P.2: Algebra Relacional Operadores Unarios

Proyección: subconjunto del esquema relación

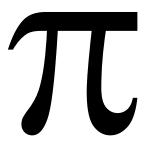
Notación: πatrib1, atrb2.. (Relación)

Libros

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Asi-1	El Fin de la Eternidad	Asimov
Dum-2	El Conde de Montecristo	Dumas

Ttítulo, autor (*Libros*)

Título	Autor
Los Tres Mosqueteros	Dumas
El Capitán Alatriste	P-Reverte
El Fin de la Eternidad	Asimov
El Conde de Montecristo	Dumas


(se escogen columnas)

SELECT distinct titulo, autor FROM libros;

Tema 3P.2: Algebra Relacional Operadores Unarios

Tu turno:

 Nombre, apellido y NIA de los estudiantes

Asignaturas del Grado en Informática

- Máximo número de días dados para realizar cada práctica.
- Edad de cada estudiante
- Número total de asignaturas impartidas en Grados de Ingeniería

Tema 3P.2: Algebra Relacional Operadores Unarios

Nombre, apellido y NIA de los estudiantes

```
πnombre, apellido, NIA (Alumno)
```

Asignaturas del Grado en Informática

```
πNombre (σtitulación='Grado en Informática' (Asignatura))
```

Máximo número de días dados para realizar cada práct.

```
πasignatura, titulación, orden, (f_fin-f_ini) as días (Práctica)
```

Edad de cada estudiante

```
\pi_{\text{NIA}}, (SYSDATE-f_nacimiento)/365.2422 as edad (Alumno)
```

 Número total de asignaturas impartidas en Grados de Ingeniería

```
πCOUNT('x') as #cursos (σtitulación LIKE '%Ingeniería%' (Asignatura))
```

Tema 3P.2: Álgebra. Definición de relación Renombrado: ρ

Renombrado: asigna el resultado de una expresión a un símbolo (vista o relación temporal con existencia limitada a la consulta definida)*.

Notación: $\rho_{\text{símbolo}}$ (Expresión), o también $S \equiv \text{Expresión}$

Sea Aux el conjunto de libros escrito por Dumas, coger solo los títulos.

$$\rho_{Aux}$$
 ($\sigma_{autor='Dumas'}(libros)$)

$$\rho_{\rm Q} \left(\pi_{\rm título} {\bf Aux} \right)$$

WITH Aux AS SELECT * FROM libros WHERE autor='Dumas' SELECT titulo FROM Aux;

- Nombre de los asignaturas de la titulación Grado en Informática
- Asignaturas con alumnos matriculados

Tema 3P.2: Álgebra. Definición de relación Renombrado: ρ

 Nombre de los asignaturas de la titulación Grado en Informática

$$ho_{
m ASG}$$
 ($\pi_{
m nombre}$ ($\sigma_{
m titulación='Grado}$ en Informática' ($Asignaturas$)))

$$ASG \equiv \pi_{\text{nombre}}(\sigma_{\text{titulación='Grado en Informática'}}(Asignaturas))$$

Asignaturas con alumnos matriculados

$$ASG_ALM \equiv \pi_{asignatura, titulación}$$
 (Matrícula)

$$\rho_{ASG_ALMN}$$
 ($\pi_{asignatura,titulación}$ Matrícula)

uc^{3m} Tema 3P.2: Álgebra Relacional – Op. Conjuntos

<u>Unión</u>: todas las tuplas de ambas relaciones (<u>compatibles</u>), eliminándose todas las tuplas repetidas

Libros de aventuras o novelas

Adventuras U Novelas

Aventuras

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Asi-1	El Fin de la Eternidad	Asimov

Aventuras U Novelas

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Asi-1	El Fin de la Eternidad	Asimov
Dum-2	El Conde de Montecristo	Dumas
Ner-1	Veinte poemas de amor	Neruda

SELECT * FROM Adventuras

UNTON

SELECT * FROM Novelas;

Tema 3P.2: Álgebra Relacional – Op. Conjuntos

Intersección: todas las tuplas que estén en ambas (compatibles)

Aventuras

Signat.	<i>Título</i>	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Per-1	El Capitán Alatriste	P-Reverte

Aventuras Novelas

Autor P-Reverte

Novelas de aventuras

SELECT * FROM Adventuras INTERSECT SELECT * FROM Novelas;

uc^{3m} Tema 3P.2: Álgebra Relacional – Op. Conjuntos

<u>Diferencia</u>: tuplas que aparecen en la primera y no en la otra (compatibles)

Libros de aventuras que no se consideran novelas

Aventuras

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Per-1	El Capitán Alatriste	P-Reverte
Dum-2	El Conde de Montecristo	Dumas

Novelas

Signat.	Título	Autor
Ner-1	Veinte poemas de amor	Neruda
Per-1	El Capitán Alatriste	P-Reverte

Aventuras - Novelas

Signat.	Título	Autor
Dum-1	Los Tres Mosqueteros	Dumas
Dum-2	El Conde de Montecristo	Dumas

SELECT * FROM Adventuras MINUS

SELECT * FROM Novelas;

Tema 3P.2: Álgebra Relacional – Op. Conjuntos

Tu turno:

Listado de profesores y alumnos

Asignaturas sin prácticas

Profesores que son alumnos

Tema 3P.2: Álgebra Relacional – Op. Conjuntos

Listado de profesores y alumnos

$$\pi_{\text{profesor}}(Asignatura) \cup \pi_{\text{nombre || apellido 1 || apellido 2}}(Alumno)$$

Asignaturas que no tienen prácticas

```
\pi_{\text{nombre,titulación}} (Asignatura) - \pi_{\text{asignatura,titulación}} (Práctica)
```

Profesores que son alumnos

$$\pi_{\text{profesor}}(Asignatura) \cap \pi_{\text{nombre || apellido 1 || apellido 2}}(Alumno)$$

uc^{3m} Tema 3P.2: Álgebra Relacional – Producto

Producto cartesiano: tuplas de ambas en todas las combinaciones

Comidas

Especialidad	Región
Gazpacho	Andalucía
Cocido	Castilla
Pote	Galicia

Vinos

Denominación
Rioja
Rueda

Comidas × Vinos

Especialidad	Región	Denominación
Gazpacho	Andalucía	Rioja
Gazpacho	Andalucía	Rueda
Cocido	Castilla	Rioja
Cocido	Castilla	Rueda
Pote	Galicia	Rioja
Pote	Galicia	Rueda

Carta de comidas con los distintos vinos que se ofrecen

```
SELECT * FROM Comidas CROSS JOIN Vinos;
SELECT * FROM Comidas, Vinos;
```

uc^{3m} Tema 3P.2: Álgebra Relacional – Combinación

Combinación (simple join or inner join): tuplas del producto cartesiano que cumplen una expresión condicional genérica. La condición lleva operadores de comparación (=, >, <..)

¿Qué películas pueden ver los clientes del cine?

Clientes

Nombre	Edad
Fulano	29
Mengano	18
Zutano	9

Título	Calificación
Matrix	18
Sólo tu	0

Clientes Θ Edad > Calificación Películas

Nombre	Edad	Título	Calificación
Fulano	29	Matrix	18
Fulano	29	Sólo tu	0
Mengano	18	Matrix	18
Mengano	18	Sólo tu	0
Zutano	9	Sólo tu	0

* FROM Clientes JOIN Películas (Clientes.edad>=calificación);

uc^{3m} Tema 3P.2: Álgebra Relacional – Combinación

<u>Combinación Natural (equijoin)</u>: Caso particular del operador combinación donde la comparación es de igualdad. Notación: * ó

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

Nombre de los empleados que son dueños de algún coche

Empleados	* dueño	Coches
------------------	----------------	--------

\prod_{nombre} (Empleados	*dueño	Coches)
------------------------------------	--------	---------

	Nombre	DNI	Marca
>	Fulano	569064	Seat Ibiza
	Zutano	383090	Ford Escort

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064

• observar que se elimina la columna repetida

SELECT Nombre FROM Clientes NATURAL JOIN Coches USING (DNI, Dueño);

Tema 3P.2: Álgebra Relacional – Combinación

Tu turno:

Posibles grupos en la asignatura de Ficheros y BD

Grupos con entregas fuera de plazo.

Listado de alumnos que han entregado alguna práctica (nombre y primer apellido)

uc^{3m} Tema 3P.2: Álgebra Relacional – Combinación

Posibles grupos en la asignatura de Ficheros y BD

$$\prod_{\text{Alumno}} \left(\sigma_{\text{asignatura}=\text{Ficheros y BD'}} \left(\textit{Matrícula} \right) \right) \times \prod_{\text{Alumno}} \left(\sigma_{\text{asignatura}=\text{Ficheros y BD'}} \left(\textit{Matrícula} \right) \right)$$

$$\prod_{\text{Alumno}} \left(\sigma_{\text{asignatura}=\text{Ficheros y BD'}} \left(\textit{Matrícula} \right) \right) \theta_{\text{Alumno}} = \text{Alumno} \prod_{\text{Alumno}} \left(\sigma_{\text{asignatura}=\text{Ficheros y BD'}} \left(\textit{Matrícula} \right) \right)$$

Grupos con entregas fuera de plazo.

```
\prod_{\text{Asignatura,titulación,num\_grupo}} (\textit{Entrega} \ \theta_{\text{fecha\_entrega NOT BETWEEN f\_ini AND F\_fin}} \ \textit{Práctica})
```

Listado de alumnos que han entregado alguna práctica (nombre y primer apellido)

```
∏ nombre, apellido ((Entrega * asignatura,titulación,num_grupo Miembro) * alumno)
```

Tema 3P.2: Álgebra Relacional: Agrupación

Agrupación: formación de grupos según un conjunto de atributos al cual se le aplica una función de agregación.

Notación:

/* también se admite GROUP BY en vez de **G** */

Personas

Nombre	Edad	Nacionalidad
Fulano	29	Español
Mengano	49	Español
John Doe	73	Inglés
Smith	14	Inglés
Zutano	3	Español
Pelancejo	25	Español

π Count ('x') Group by Nacionalidad (Personas)

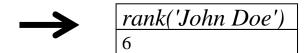
Nacionalidad	Count
Español	4
Inglés	2

Número de personas por nacionalidad

SELECT Nationalidad, count('x') FROM Personas GROUP BY Nationalidad;

Funciones de agrupación: Count(), Sum(), Avg(), Min(), Max()

Tema 3P.2: Álgebra Relacional Extendida. Conjuntos Ordenados


Orden: conjunto ordenado (lista) es el resultado de aplicar un orden (ORDER BY_{orden} ó T_{orden}) sobre una relación. Sobre una lista ordenada se pueden aplicar funciones (analíticas) de agregación: *first*, *last*, y *rank(value)*, y la seudocolumna *numrow*.

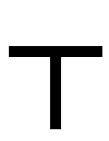
Cual es la posición de John Doe entre los clientes ordenados alfabéticamente?

Clients

C 110110		
Name	Age	Nationality
Fulano	29	Spanish
Mengano	49	Spanish
John Doe	73	English
Smith	14	English
Zutano	3	Spanish
Pelancejo	25	Spanish

 $\pi_{\text{rank ('John Doe')}} T_{\text{age}}(Clients)$

SELECT rank('John Doe')
within group (ORDER BY Name) "position"
FROM Clients;


Tema 3P.2: Álgebra Rel. – otros operadores

Tu turno:

Nota media y máxima por práctica, y nota media 'global' (media de todas las prácticas de cada asignatura).

- Asignatura con mayor número de prácticas
- Nombre y apellido del estudiante con mayor calificación por asignatura.

Tema 3P.2: Álgebra Rel. – otros operadores

Asignaturas con menos de 15 alumnos

```
\pi_{asignatura,titulación} \, \sigma_{count(x)<15} \, (\, \, \dot{\mathbf{Q}}_{asignatura,titulación} \, \mathbf{Matrícula} \, )
```

Nota media y máxima por práctica, y media 'global' (media de todas las prácticas de cada asignatura).

```
\pi_{asignatura, titulación, num\_pract, AVG(calificación) \ as \ media} \ \boldsymbol{\varsigma}_{asignatura, titulación, num\_pract} (\boldsymbol{Entrega})
\cup \ \pi_{asignatura, titulación, 'Global', AVG(calificación) \ as \ media} \ \boldsymbol{\varsigma}_{asignatura, titulación} \ (\boldsymbol{Entrega})
```

Asignatura con mayor número de prácticas

```
\pi_{\text{asignatura,titulación}} \sigma_{\text{first(1)}} + \sigma_{\text{count(x)}} (G_{\text{asignatura,titulación}} \operatorname{Práctica})
```

Nombre y apellido del estudiante con mayor calificación por asignatura.

```
\rho_{\text{CAL}}\left(\pi_{\text{asignatura,titulación,num\_grupo,SUM(calificacion) as nota}}\left(\boldsymbol{\varsigma}_{\text{asignatura,titulación,numgrupo}}\right.\boldsymbol{Entrega})\right)
\rho_{\text{GRP}}\left(\pi_{\text{asignatura,titulación,MAX(nota) as nota}}\left(\vec{\varphi}_{\text{asignatura,titulación}}\left(CAL\right)\right)
\rho_{\text{Q}} ( \pi_{\text{asignatura,titulación,nombre,apellido,nota}} (Alumno * Miembro * CAL * GRP)
```

Tema 3P.2: Algebra Relacional Extendida: División

División: el cociente lo forman todas las tuplas que concatenadas con cada tupla del divisor estén contenidas en el dividendo.

Notación:

$$\mathbf{A} \div \mathbf{B} \equiv \pi_{\text{esq(A)-esq(B)}} \mathbf{A} - \pi_{\text{esq(A)-esq(B)}} ((\pi_{\text{esq(A)-esq(B)}} \mathbf{A} \times \mathbf{B}) - \mathbf{A})$$

Currícula

Candidato	Habilidad
Pepe Pérez	Lenguaje C
Pepe Pérez	Java
José Gómez	Lenguaje C
José Gómez	SQL
Fulano Pi	SQL
Fulano Pi	Java
Fulano Pi	Lenguaje C

Puestos

Perfil	Requisito
Analista/Des	Lenguaje C
Analista/Des	SQL

Candidatos que cumplen el perfil 'Analista/Des'

Currícula $\div \pi_{\text{requisito}} (\sigma_{\text{perfil='Analista/Des'}}, \text{Puestos})$

SELECT candidato FROM curricula MINUS SELECT candidato FROM (SELECT candidato, requisito FROM curricula, puesto MINUS SELECT * FROM curricula);

Candidato José Gómez Fulano Pi

Tema 3P.2: Álgebra Relacional Extendida: Semi-Join

Semi-Combinación: igual que cualquier combinación, pero sólo se toman las columnas del operando izquierdo (|*) o derecho (*|). *Notación*: left semijoin: |* ó ⋈ right semijoin: *| ó ⋈

Empleados

Nombre	DNI
Fulano	569064
Mengano	434848
Zutano	383090

Empleados

Empleados con coche

Coches

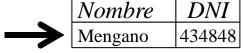
Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064

SELECT *

FROM empleados NATURAL JOIN (SELECT dueño FROM coche);

SELECT * FROM empleados WHERE DNT TN (SELECT dueño FROM coche

Tema 3P.2: Álgebra Relacional Extendida: Anti-Join


Anti-Combinación: igual que la semi combinación, pero las tuplas que se incluyen son las que no cumplen la condición definida.

Empleados

Nombre	DNI	
Fulano	569064	
Mengano	434848	
Zutano	383090	

Empleados sin coche

Coches

Marca	Dueño
Ford Escort	383090
Seat Ibiza	569064
Honda Civic	383090

SELECT * FROM empleados

MINUS

* FROM empleados NATURAL JOIN SELECT (SELECT dueño FROM coche)

SELECT * FROM empleados DNT NOT IN (SELECT dueño FROM coche)

Uc3m Tema 3P.2: Algebra Relacional Extendida: **Outer Join**

Combinación externa: extensión de la combinación, que incluye las tuplas que no encajan de la relación izquierda/derecha/ambas. Las columnas que no aplican, adoptan el valor nulo (NULL $\delta \omega$).

left outer join:]* ó ⋈ right outer join: *[ó ⋈ full outer join:]*[ó ⋈

Empleados y sus coches, en su caso

Empleados dueño Coches

Coches con su dueño si es uno de nuestros empleados.

Empleados Lueño Coches

Empleados y coches, asociados como proceda

Empleados Coches

SELECT * FROM empleados LEFT OUTER JOIN coches;

SELECT * FROM empleados RIGHT OUTER JOIN coches;

SELECT * FROM empleados FULL OUTER JOIN coches;

Item 3P.2: Álgebra Rel. – otros operadores

Tu turno:

Estudiantes en evaluación continua (su calificación es mayor de cero en cada una de las prácticas planteadas).

Profesores de asignaturas con prácticas.

Nombre completo de los estudiantes que no están matriculados

Estudiantes con sus asignaturas, tanto los matriculados como los que no lo están.

Item 3P.2: Álgebra Rel. – otros operadores

Estudiantes en evaluación continua (su calificación es mayor de cero en cada práctica).

```
\rho_{\text{CONT}}((\sigma_{\text{calificacion}>0} \text{ Entregas}) \div (\pi_{\text{asignatura,titulación,orden}} \text{ Práctica}))
\rho_Q ( \pi_{asignatura,titulación,NIA} Miembro * CONT )
```

Profesores de asignaturas con prácticas.

```
\pi_{\text{profesor}} (Asignatura \times \pi_{\text{asignatura,titulación}} (Práctica))
```

Nombre completo de estudiantes no matriculados

```
\pi_{\text{nombre,apellido}} (Alumno \triangleright \pi_{\text{alumno}} (Matrícula))
```

Estudiantes con sus asignaturas, tanto los que estén matriculados como los que no lo están.

```
\pi_{\text{NIA,asignatura, titulación}} (Alumno \longrightarrow \pi_{\text{alumno}} (Matrícula))
```

```
<sup>∪c3m</sup> Tema 3P.3: traducción Álgebra Rel. ↔ SQL
 [WITH
      <símbolo> AS <subquery>
      [, <simbolo> AS <subquery> ... ] ]
SELECT [ALL|DISTINCT] <lista de selección>-
      FROM <cláusula de origen>— X M M M M D U
      [WHERE <condición> ] —
```

```
[GROUP BY <expresión> [HAVING <condcn>]]

[{UNION|UNION ALL|MINUS|INTERSECT} <query>]

[ORDER BY <expresión> [ASC|DESC]];
```

uc^{3m} Tema 3P.3: Orden de ejecución

```
[WITH
```

- <simbolo> **AS** <subquery> [, <símbolo> AS <subquery> ...]]
- SELECT [ALL|DISTINCT] <lista de selección>
 - FROM < cláusula de origen>
 - [WHERE <condición>]
 - [GROUP BY <expresión> [HAVING <condcn>]]
 - [{UNION|UNION ALL|MINUS|INTERSECT} <query>]
 - [ORDER BY <expresión> [ASC|DESC]];

Consultas (ejemplos)

ALUMNOS (<u>num_mat</u>, nombre, ciudad, cod_grupo) DR/UC GRUPOS (cod_grupo, curso, turno) DC/UC IMPARTIR (cod grupo, cod profesor, asignatura, horas) DR/UC PROFESORES (cod profesor, nombre, ciudad, tipo, sueldo)

Nombre y ciudad de los alumnos matriculados en el grupo cuyo código es 12

ALUMNOS			
num_mat	nombre	ciudad	cod_grupo
0001	Juan García	leganés	11
0002	Ana Pérez	alcorcón	11
0003	Isabel Sánchez	leganés	12
0004	José López	leganés	12

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?
- (c) ¿Cuál sería su equivalente en SQL?

$$\pi_{\text{nombre, ciudad}}(\sigma_{\text{cod_grupo} = '12'}(alumnos))$$

SELECT nombre, ciudad FROM alumnos WHERE cod_grupo = '12';

Ciudad de los alumnos del grupo 12

ALUMNOS			
num_mat	nombre	ciudad	cod_grupo
0001	Juan García	leganés	11
0002	Ana Pérez	alcorcón	11
0003	Isabel Sánchez	leganés	12
0004	José López	leganés	12

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?
- (c) ¿Cuál sería su equivalente en SQL?

$$\pi_{\text{ciudad}}(\sigma_{\text{cod_grupo} = '12'}(alumnos))$$

SELECT DISTINCT ciudad FROM alumnos WHERE cod grupo = '12';

Nombre de los alumnos y profesores que viven en Leganés

ALUMNOS			
num_mat	nombre	ciudad	cod_grupo
0001	Juan García	leganés	11
0002	Ana Pérez	alcorcón	11
0003	Isabel Sánchez	leganés	12
0004	José López	leganés	12

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?(c) ¿Cuál sería su equivalente en SQL?

PROFESORES				
cod_profesor	nombre	ciudad	tipo	sueldo
001	Sonia Pérez	madrid	AU	1500
002	Sofía Hernán	leganés	AU	1500
003	Víctor Álvarez	leganés	TUI	2200

$$(\pi_{\mathsf{nombre}}(\sigma_{\mathsf{ciudad}=\mathsf{`Legan\'es'}}(\mathsf{alumnos}))) \cup (\pi_{\mathsf{nombre}}(\sigma_{\mathsf{ciudad}=\mathsf{`Legan\'es'}}(\mathsf{profesores})))$$

SELECT nombre FROM alumnos WHERE ciudad ='Leganés' **UNION**

SELECT nombre FROM profesores WHERE ciudad ='Leganés';

Nombre de los profesores que en la actualidad no impartan ninguna asignatura

IMPARTIR			
cod_grupo	cod_profesor	asignatura	horas
11	003	Inglés	2
12	003	Inglés	2
11	001	Informática	3
12	001	Informática	3

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?
- (c) ¿Cuál sería su equivalente en SQL?

PROFESORES				
cod_profesor	nombre	ciudad	tipo	sueldo
001	Sonia Pérez	madrid	AU	1500
002	Sofía Hernán	leganés	AU	1500
003	Víctor Álvarez	leganés	TUI	2200

GRUPOS		
cod_grupo	curso	turno
11	1	М
12	1	Т

 π_{nombre} (profesores * ($\pi_{\text{cod profesor}}$ (profesores) - $\pi_{\text{cod profesor}}$ (impartir)))

SELECT nombre

FROM profesores NATURAL JOIN

(SELECT cod profesor FROM profesores

MINUS

SELECT cod_profesor FROM impartir);

Nombre de los alumnos matriculados en el turno de mañana

ALUMNOS			
num_mat	nombre	ciudad	cod_grupo
0001	Juan García	leganés	11
0002	Ana Pérez	alcorcón	11
0003	Isabel Sánchez	leganés	12
0004	José López	leganés	12

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?
- (c) ¿Cuál sería su equivalente en SQL?

$$\pi_{\text{nombre}}(\text{alumnos} * (\pi_{\text{cod_grupo}}(\sigma_{\text{turno='M'}}(\text{grupos}))))$$

SELECT nombre

FROM alumnos NATURAL JOIN (SELECT cod grupo FROM grupos WHERE turno='M');

GRUPOS		
cod_grupo	curso	turno
11	1	М
12	1	Т

- (a) ¿Cuál sería el resultado de la consulta?
- (b) ¿Cómo se expresaría en álgebra?
- (c) ¿Cuál sería su equivalente en SQL?
- Número de grupos que existen en cada curso $\pi_{curso, count}$ (GROUP BY_{curso} grupos) SELECT curso, count('x') FROM grupos GROUP BY curso;
- Cursos que solo tienen un grupo de mañana $\pi_{curso}(\sigma_{count=1}(GROUP\ BY_{curso}\ (\sigma_{turno='M'}(grupos))\))$ SELECT curso FROM grupos WHERE turno='M' GROUP BY curso HAVING count('x')=1;
- Cursos que solo tienen un grupo y además es de mañana $\pi_{\text{curso}}(\sigma_{\text{count}=1~\land~\text{MIN}(\text{turno}='\text{M'})}\text{ GROUP BY}_{\text{curso}}\text{ (grupos)})$ SELECT curso FROM grupos GROUP BY curso HAVING count('x')=1 AND MIN(turno)='M';